Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.823
Filtrar
1.
Zhonghua Yi Xue Za Zhi ; 104(16): 1351-1355, 2024 Apr 23.
Artigo em Chinês | MEDLINE | ID: mdl-38644282

RESUMO

IgA nephropathy is the most common primary glomerulonephritis worldwide, and genetic factors may play an important role in its pathogenesis. Following candidate gene association analysis and genome-wide linkage study, genome-wide association studies (GWAS) have found multiple susceptibility genes related to the pathogenesis and clinical phenotype of IgA nephropathy. Meanwhile, structural variation and epigenetic changes are also closely related to IgA nephropathy. Genetic variants have been found to explain about 11% of its heritability. In the current era of genomic medicine, how to find more susceptible genes/loci, whole genome sequencing studies (WGS) provide clues to further understand the genetic variation of IgA nephropathy. How to find the cell type-specific susceptibility genes associated with IgA nephropathy, multi-omics studies will conduct comprehensive analysis via single-cell sequencing, expression quantitative trait locus (eQTL) and genomics to find the pathogenic genes and offer insights into the development of targeted drugs, which will be the trend and direction of future research.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glomerulonefrite por IGA , Locos de Características Quantitativas , Glomerulonefrite por IGA/genética , Humanos , Variação Genética , Ligação Genética , Genômica , Epigênese Genética
2.
BMC Plant Biol ; 24(1): 271, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605289

RESUMO

BACKGROUND: Agropyron cristatum (L.) is a valuable genetic resource for expanding the genetic diversity of common wheat. Pubing3228, a novel wheat-A. cristatum hybrid germplasm, exhibits several desirable agricultural traits, including high grain number per spike (GNS). Understanding the genetic architecture of GNS in Pubing3228 is crucial for enhancing wheat yield. This study aims to analyze the specific genetic regions and alleles associated with high GNS in Pubing3228. METHODS: The study employed a recombination inbred line (RIL) population derived from a cross between Pubing3228 and Jing4839 to investigate the genetic regions and alleles linked to high GNS. Quantitative Trait Loci (QTL) analysis and candidate gene investigation were utilized to explore these traits. RESULTS: A total of 40 QTLs associated with GNS were identified across 16 chromosomes, accounting for 4.25-17.17% of the total phenotypic variation. Five QTLs (QGns.wa-1D, QGns.wa-5 A, QGns.wa-7Da.1, QGns.wa-7Da.2 and QGns.wa-7Da.3) accounter for over 10% of the phenotypic variation in at least two environments. Furthermore, 94.67% of the GNS QTL with positive effects originated from Pubing3228. Candidate gene analysis of stable QTLs identified 11 candidate genes for GNS, including a senescence-associated protein gene (TraesCS7D01G148000) linked to the most significant SNP (AX-108,748,734) on chromosome 7D, potentially involved in reallocating nutrients from senescing tissues to developing seeds. CONCLUSION: This study provides new insights into the genetic mechanisms underlying high GNS in Pubing3228, offering valuable resources for marker-assisted selection in wheat breeding to enhance yield.


Assuntos
Agropyron , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Agropyron/genética , Melhoramento Vegetal , Ligação Genética , Triticum/genética , Fenótipo , Grão Comestível/genética
3.
PLoS One ; 19(4): e0299825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593174

RESUMO

Chilling sensitivity is one of the greatest challenges affecting the marketability and profitability of sweet basil (Ocimum basilicum L.) in the US and worldwide. Currently, there are no sweet basils commercially available with significant chilling tolerance and traditional aroma profiles. This study was conducted to identify quantitative trait loci (QTLs) responsible for chilling tolerance and aroma compounds in a biparental mapping population, including the Rutgers advanced breeding line that served as a chilling tolerant parent, 'CB15', the chilling sensitive parent, 'Rutgers Obsession DMR' and 200 F2 individuals. Chilling tolerance was assessed by percent necrosis using machine learning and aroma profiling was evaluated using gas chromatography (GC) mass spectrometry (MS). Single nucleotide polymorphism (SNP) markers were generated from genomic sequences derived from double digestion restriction-site associated DNA sequencing (ddRADseq) and converted to genotype data using a reference genome alignment. A genetic linkage map was constructed and five statistically significant QTLs were identified in response to chilling temperatures with possible interactions between QTLs. The QTL on LG24 (qCH24) demonstrated the largest effect for chilling response and was significant in all three replicates. No QTLs were identified for linalool, as the population did not segregate sufficiently to detect this trait. Two significant QTLs were identified for estragole (also known as methyl chavicol) with only qEST1 on LG1 being significant in the multiple-QTL model (MQM). QEUC26 was identified as a significant QTL for eucalyptol (also known as 1,8-cineole) on LG26. These QTLs may represent key mechanisms for chilling tolerance and aroma in basil, providing critical knowledge for future investigation of these phenotypic traits and molecular breeding.


Assuntos
Ocimum basilicum , Locos de Características Quantitativas , Humanos , Ocimum basilicum/genética , Melhoramento Vegetal , Mapeamento Cromossômico/métodos , Fenótipo , Genômica , Polimorfismo de Nucleotídeo Único , Ligação Genética
4.
BMC Plant Biol ; 24(1): 292, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632554

RESUMO

Spike length (SL) is one of the most important agronomic traits affecting yield potential and stability in wheat. In this study, a major stable quantitative trait locus (QTL) for SL, i.e., qSl-2B, was detected in multiple environments in a recombinant inbred line (RIL) mapping population, KJ-RILs, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). The qSl-2B QTL was mapped to the 60.06-73.06 Mb region on chromosome 2B and could be identified in multiple mapping populations. An InDel molecular marker in the target region was developed based on a sequence analysis of the two parents. To further clarify the breeding use potential of qSl-2B, we analyzed its genetic effects and breeding selection effect using both the KJ-RIL population and a natural mapping population, which consisted of 316 breeding varieties/advanced lines. The results showed that the qSl-2B alleles from KN9204 showed inconsistent genetic effects on SL in the two mapping populations. Moreover, in the KJ-RILs population, the additive effects analysis of qSl-2B showed that additive effect was higher when both qSl-2D and qSl-5A harbor negative alleles under LN and HN. In China, a moderate selection utilization rate for qSl-2B was found in the Huanghuai winter wheat area and the selective utilization rate for qSl-2B continues to increase. The above findings provided a foundation for the genetic improvement of wheat SL in the future via molecular breeding strategies.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Triticum/genética , Ligação Genética , Melhoramento Vegetal , Fenótipo
5.
BMC Plant Biol ; 24(1): 306, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644480

RESUMO

Linkage maps are essential for genetic mapping of phenotypic traits, gene map-based cloning, and marker-assisted selection in breeding applications. Construction of a high-quality saturated map requires high-quality genotypic data on a large number of molecular markers. Errors in genotyping cannot be completely avoided, no matter what platform is used. When genotyping error reaches a threshold level, it will seriously affect the accuracy of the constructed map and the reliability of consequent genetic studies. In this study, repeated genotyping of two recombinant inbred line (RIL) populations derived from crosses Yangxiaomai × Zhongyou 9507 and Jingshuang 16 × Bainong 64 was used to investigate the effect of genotyping errors on linkage map construction. Inconsistent data points between the two replications were regarded as genotyping errors, which were classified into three types. Genotyping errors were treated as missing values, and therefore the non-erroneous data set was generated. Firstly, linkage maps were constructed using the two replicates as well as the non-erroneous data set. Secondly, error correction methods implemented in software packages QTL IciMapping (EC) and Genotype-Corrector (GC) were applied to the two replicates. Linkage maps were therefore constructed based on the corrected genotypes and then compared with those from the non-erroneous data set. Simulation study was performed by considering different levels of genotyping errors to investigate the impact of errors and the accuracy of error correction methods. Results indicated that map length and marker order differed among the two replicates and the non-erroneous data sets in both RIL populations. For both actual and simulated populations, map length was expanded as the increase in error rate, and the correlation coefficient between linkage and physical maps became lower. Map quality can be improved by repeated genotyping and error correction algorithm. When it is impossible to genotype the whole mapping population repeatedly, 30% would be recommended in repeated genotyping. The EC method had a much lower false positive rate than did the GC method under different error rates. This study systematically expounded the impact of genotyping errors on linkage analysis, providing potential guidelines for improving the accuracy of linkage maps in the presence of genotyping errors.


Assuntos
Mapeamento Cromossômico , Genótipo , Triticum , Triticum/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Ligação Genética , Técnicas de Genotipagem/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos
6.
Methods Mol Biol ; 2787: 169-181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656489

RESUMO

Genetic maps are an excellent tool for the analysis of important traits, the development of which is the result of the combined expression of several genes, enabling the genomic localization of the factors determining them. Such features, characterized by a normal distribution of values, are referred to as quantitative or polygenic. The analysis of their genetic background using a chromosome map is called the mapping of quantitative traits loci (QTL). QTL analysis is a statistical method of determining the genetic association of phenotypic data (trait measurements) with genotypic data (DNA markers assigned to linkage groups).There are numerous tools developed for QTL mapping. This chapter introduces Windows QTL Cartographer with Composite Interval Mapping (CIM) method, which estimates the QTL position by combining interval mapping with multiple regression. The genotypic and phenotypic data used in the exemplary QTL mapping procedure were obtained for the recombinant inbred line (RIL) population of rye. Plant height, assessed in three seasons, was the exemplary trait under study.


Assuntos
Mapeamento Cromossômico , Fenótipo , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Genótipo , Ligação Genética , Software , Endogamia , Cromossomos de Plantas/genética
7.
Methods Mol Biol ; 2787: 153-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656488

RESUMO

Genetic mapping is the determination of the position and relative genetic distance between genes or molecular markers in the chromosomes of a particular species. The construction of genetic maps uses data from the genotyping of the mapping population. Among the different mapping populations used, two are relatively common: the F2 and recombinant inbred lines (RILs) obtained as a result of the controlled crossing of genetically diverse parental forms (e.g., inbred lines). Also, the dihaploid (DH) population is often used in plants, but obtaining DHs in different crops, including rye, is very difficult or even impossible. Any molecular marker system can be used for genotyping. Polymorphic markers are used for linkage analysis, differentiating parental forms with segregation in the mapping population, consistent with the appropriate single-gene model. A genetic map is a great source of information on a species and can be an exquisite tool for analyzing important quantitative traits (QT).This chapter presents the procedure of genetic map construction with two different algorithms using the JoinMap5.0 program. First, the Materials section briefly informs about the mapping program, showing how to obtain a mapping population and prepare data for mapping. Finally, the Methods section describes the protocol for the mapping procedure itself.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Algoritmos , Cruzamentos Genéticos , Genótipo , Marcadores Genéticos , Software , Cromossomos de Plantas/genética
8.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542350

RESUMO

Kernel row number (KRN) is a crucial trait in maize that directly influences yield; hence, understanding the mechanisms underlying KRN is vital for the development of high-yielding inbred lines and hybrids. We crossed four excellent panicle inbred lines (CML312, CML444, YML46, and YML32) with Ye107, and after eight generations of selfing, a multi-parent population was developed comprising four subpopulations, each consisting of 200 lines. KRN was accessed in five environments in Yunnan province over three years (2019, 2021, and 2022). The objectives of this study were to (1) identify quantitative trait loci and single nucleotide polymorphisms associated with KRN through linkage and genome-wide association analyses using high-quality genotypic data, (2) identify candidate genes regulating KRN by identifying co-localized QTLs and SNPs, and (3) explore the pathways involved in KRN formation and identify key candidate genes through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Our study successfully identified 277 significant Quantitative trait locus (QTLs) and 53 significant Single Nucleotide Polymorphism (SNPs) related to KRN. Based on gene expression, GO, and KEGG analyses, SNP-177304649, SNP-150393177, SNP-135283055, SNP-138554600, and SNP-120370778, which were highly likely to be associated with KRN, were identified. Seven novel candidate genes at this locus (Zm00001d022420, Zm00001d022421, Zm00001d016202, Zm00001d050984, Zm00001d050985, Zm00001d016000, and Zm00014a012929) are associated with KRN. Among these, Zm00014a012929 was identified using the reference genome Mo17. The remaining six genes were identified using the reference genome B73. To our knowledge, this is the first report on the association of these genes with KRN in maize. These findings provide a theoretical foundation and valuable insights into the genetic mechanisms underlying maize KRN and the development of high-yielding hybrids through heterosis.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Mapeamento Cromossômico , Zea mays/genética , Ligação Genética , China , Fenótipo , Polimorfismo de Nucleotídeo Único
9.
Theor Appl Genet ; 137(4): 87, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512468

RESUMO

KEY MESSAGE: A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for tiller-related traits were reported, and the candidate genes underlying qMtn-KJ-5D, a novel major and stable QTL for maximum tiller number, were characterized. Tiller-related traits play an important role in determining the yield potential of wheat. Therefore, it is important to elucidate the genetic basis for tiller number when attempting to use genetic improvement as a tool for enhancing wheat yields. In this study, a quantitative trait locus (QTL) analysis of three tiller-related traits was performed on the recombinant inbred lines (RILs) of a mapping population, referred to as KJ-RILs, that was derived from a cross between the Kenong 9204 (KN9204) and Jing 411 (J411) lines. A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for spike number per plant (SNPP), maximum tiller number (MTN), and ear-bearing tiller rate (EBTR) were detected in eight different environments. Among these QTLs with additive effects, three major and stable QTLs were first documented herein. Almost all but two pairwise epistatic QTLs showed minor interaction effects accounting for no more than 3.0% of the phenotypic variance. The genetic effects of two colocated major and stable QTLs, i.e., qSnpp-KJ-5D.1 and qMtn-KJ-5D, for yield-related traits were characterized. The breeding selection effect of the beneficial allele for the two QTLs was characterized, and its genetic effects on yield-related traits were evaluated. The candidate genes underlying qMtn-KJ-5D were predicted based on multi-omics data, and TraesKN5D01HG00080 was identified as a likely candidate gene. Overall, our results will help elucidate the genetic architecture of tiller-related traits and can be used to develop novel wheat varieties with high yields.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Mapeamento Cromossômico/métodos , Ligação Genética , Melhoramento Vegetal , Fenótipo
10.
Theor Appl Genet ; 137(4): 78, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466414

RESUMO

KEY MESSAGE: A genetic linkage map representing proso millet genome was constructed with SSR markers, and a major QTL corresponding to plant height was mapped on chromosome 14 of this map. Proso millet (Panicum miliaceum L.) has the lowest water requirements of all cultivated cereal crops. However, the lack of a genetic map and the paucity of genomic resources for this species have limited the utility of proso millet for detailed genetic studies and hampered genetic improvement programs. In this study, 97,317 simple sequence repeat (SSR) markers were developed based on the genome sequence of the proso millet landrace Longmi 4. Using some of these markers in conjunction with previously identified SSRs, an SSR-based linkage map for proso millet was successfully constructed using a large mapping population (316 F2 offspring). In total, 186 SSR markers were assigned to 18 linkage groups corresponding to the haploid chromosomes. The constructed map had a total length of 3033.42 centimorgan (cM) covering 78.17% of the assembled reference genome. The length of the 18 linkage groups ranged from 88.89 cM (Chr. 15) to 274.82 cM (Chr. 16), with an average size of 168.17 cM. To our knowledge, this is the first genetic linkage map for proso millet based on SSR markers. Plant height is one of the most important traits in crop improvement. A major QTL was repeatedly detected in different environments, explaining 8.70-24.50% of the plant height variations. A candidate gene affecting auxin biosynthesis and transport, and ROS homeostasis regulation was predicted. Thus, the linkage map and QTL analysis provided herein will promote the development of gene mining and molecular breeding in proso millet.


Assuntos
Panicum , Panicum/genética , Mapeamento Cromossômico , Fenótipo , Repetições de Microssatélites , Ligação Genética , Genoma de Planta
11.
Hum Genet ; 143(3): 423-435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38519595

RESUMO

Meniere disease is a complex inner ear disorder with significant familial aggregation. A differential prevalence of familial MD (FMD) has been reported, being 9-10% in Europeans compared to 6% in East Asians. A broad genetic heterogeneity in FMD has been described, OTOG being the most common mutated gene, with a compound heterozygous recessive inheritance. We hypothesize that an OTOG-related founder effect may explain the higher prevalence of FMD in the European population. Therefore, the present study aimed to compare the allele frequency (AF) and distribution of OTOG rare variants across different populations. For this purpose, the coding regions with high constraint (low density of rare variants) were retrieved in the OTOG coding sequence in Non-Finnish European (NFE).. Missense variants (AF < 0.01) were selected from a 100 FMD patient cohort, and their population AF was annotated using gnomAD v2.1. A linkage analysis was performed, and odds ratios were calculated to compare AF between NFE and other populations. Thirteen rare missense variants were observed in 13 FMD patients, with 2 variants (rs61978648 and rs61736002) shared by 5 individuals and another variant (rs117315845) shared by two individuals. The results confirm the observed enrichment of OTOG rare missense variants in FMD. Furthermore, eight variants were enriched in the NFE population, and six of them were in constrained regions. Structural modeling predicts five missense variants that could alter the otogelin stability. We conclude that several variants reported in FMD are in constraint regions, and they may have a founder effect and explain the burden of FMD in the European population.


Assuntos
Frequência do Gene , Doença de Meniere , Mutação de Sentido Incorreto , População Branca , Humanos , Doença de Meniere/genética , Doença de Meniere/epidemiologia , Feminino , Prevalência , Masculino , População Branca/genética , Europa (Continente)/epidemiologia , Predisposição Genética para Doença , Adulto , Pessoa de Meia-Idade , Ligação Genética , Efeito Fundador
12.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473942

RESUMO

Plant architecture is one of the key factors affecting maize yield formation and can be divided into secondary traits, such as plant height (PH), ear height (EH), and leaf number (LN). It is a viable approach for exploiting genetic resources to improve plant density. In this study, one natural panel of 226 inbred lines and 150 family lines derived from the offspring of T32 crossed with Qi319 were genotyped by using the MaizeSNP50 chip and the genotyping by sequence (GBS) method and phenotyped under three different environments. Based on the results, a genome-wide association study (GWAS) and linkage mapping were analyzed by using the MLM and ICIM models, respectively. The results showed that 120 QTNs (quantitative trait nucleotides) and 32 QTL (quantitative trait loci) related to plant architecture were identified, including four QTL and 40 QTNs of PH, eight QTL and 41 QTNs of EH, and 20 QTL and 39 QTNs of LN. One dominant QTL, qLN7-2, was identified in the Zhangye environment. Six QTNs were commonly identified to be related to PH, EH, and LN in different environments. The candidate gene analysis revealed that Zm00001d021574 was involved in regulating plant architecture traits through the autophagy pathway, and Zm00001d044730 was predicted to interact with the male sterility-related gene ms26. These results provide abundant genetic resources for improving maize plant architecture traits by using approaches to biological breeding.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Fenótipo , Perfilação da Expressão Gênica , Ligação Genética
13.
G3 (Bethesda) ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38366548

RESUMO

In species with large and complex genomes such as conifers, dense linkage maps are a useful resource for supporting genome assembly and laying the genomic groundwork at the structural, populational, and functional levels. However, most of the 600+ extant conifer species still lack extensive genotyping resources, which hampers the development of high-density linkage maps. In this study, we developed a linkage map relying on 21,570 single nucleotide polymorphism (SNP) markers in Sitka spruce (Picea sitchensis [Bong.] Carr.), a long-lived conifer from western North America that is widely planted for productive forestry in the British Isles. We used a single-step mapping approach to efficiently combine RAD-seq and genotyping array SNP data for 528 individuals from 2 full-sib families. As expected for spruce taxa, the saturated map contained 12 linkages groups with a total length of 2,142 cM. The positioning of 5,414 unique gene coding sequences allowed us to compare our map with that of other Pinaceae species, which provided evidence for high levels of synteny and gene order conservation in this family. We then developed an integrated map for P. sitchensis and Picea glauca based on 27,052 markers and 11,609 gene sequences. Altogether, these 2 linkage maps, the accompanying catalog of 286,159 SNPs and the genotyping chip developed, herein, open new perspectives for a variety of fundamental and more applied research objectives, such as for the improvement of spruce genome assemblies, or for marker-assisted sustainable management of genetic resources in Sitka spruce and related species.


Assuntos
Picea , Traqueófitas , Humanos , Picea/genética , Traqueófitas/genética , Mapeamento Cromossômico , Genoma , Genômica , Polimorfismo de Nucleotídeo Único , Ligação Genética , Genoma de Planta
14.
G3 (Bethesda) ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38412554

RESUMO

This study investigated the genetic basis of carrot root shape traits using composite interval mapping in two biparental populations (n = 119 and n = 128). The roots of carrot F2:3 progenies were grown over 2 years and analyzed using a digital imaging pipeline to extract root phenotypes that compose market class. Broad-sense heritability on an entry-mean basis ranged from 0.46 to 0.80 for root traits. Reproducible quantitative trait loci (QTL) were identified on chromosomes 2 and 6 on both populations. Colocalization of QTLs for phenotypically correlated root traits was also observed and coincided with previously identified QTLs in published association and linkage mapping studies. Individual QTLs explained between 14 and 27% of total phenotypic variance across traits, while four QTLs for length-to-width ratio collectively accounted for up to 73% of variation. Predicted genes associated with the OFP-TRM (OVATE Family Proteins-TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathway were identified within QTL support intervals. This observation raises the possibility of extending the current regulon model of fruit shape to include carrot storage roots. Nevertheless, the precise molecular mechanisms through which this pathway operates in roots characterized by secondary growth originating from cambium layers remain unknown.


Assuntos
Daucus carota , Daucus carota/genética , Mapeamento Cromossômico , Locos de Características Quantitativas , Fenótipo , Frutas/genética , Ligação Genética
15.
PeerJ ; 12: e16570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313025

RESUMO

Background: Oil palm (Elaeis guineensis Jacq.) is one of the major oil-producing crops. Improving the quality and increasing the production yield of oil palm have been the primary focuses of both conventional and modern breeding approaches. However, the conventional breeding approach for oil palm is very challenging due to its longevity, which results in a long breeding cycle. Thus, the establishment of marker assisted selection (MAS) for oil palm breeding programs would speed up the breeding pipeline by generating new oil palm varieties that possess high commercial traits. With the decreasing cost of sequencing, Genotyping-by-sequencing (GBS) is currently feasible to many researchers and it provides a platform to accelerate the discovery of single nucleotide polymorphism (SNP) as well as insertion and deletion (InDel) markers for the construction of a genetic linkage map. A genetic linkage map facilitates the identification of significant DNA regions associated with the trait of interest via quantitative trait loci (QTL) analysis. Methods: A mapping population of 112 F1 individuals from a cross of Deli dura and Serdang pisifera was used in this study. GBS libraries were constructed using the double digestion method with HindIII and TaqI enzymes. Reduced representation libraries (RRL) of 112 F1 progeny and their parents were sequenced and the reads were mapped against the E. guineensis reference genome. To construct the oil palm genetic linkage map, informative SNP and InDel markers were used to discover significant DNA regions associated with the traits of interest. The nine traits of interest in this study were fresh fruit bunch (FFB) yield, oil yield (OY), oil to bunch ratio (O/B), oil to dry mesocarp ratio (O/DM) ratio, oil to wet mesocarp ratio (O/WM), mesocarp to fruit ratio (M/F), kernel to fruit ratio (K/F), shell to fruit ratio (S/F), and fruit to bunch ratio (F/B). Results: A total of 2.5 million SNP and 153,547 InDel markers were identified. However, only a subset of 5,278 markers comprising of 4,838 SNPs and 440 InDels were informative for the construction of a genetic linkage map. Sixteen linkage groups were produced, spanning 2,737.6 cM for the maternal map and 4,571.6 cM for the paternal map, with average marker densities of one marker per 2.9 cM and one per 2.0 cM respectively, were produced. A QTL analysis was performed on nine traits; however, only QTL regions linked to M/F, K/F and S/F were declared to be significant. Of those QTLs were detected: two for M/F, four for K/F and one for S/F. These QTLs explained 18.1-25.6% of the phenotypic variance and were located near putative genes, such as casein kinase II and the zinc finger CCCH domain, which are involved in seed germination and growth. The identified QTL regions for M/F, K/F and S/F from this study could be applied in an oil palm breeding program and used to screen palms with desired traits via marker assisted selection (MAS).


Assuntos
Melhoramento Vegetal , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Genótipo , Melhoramento Vegetal/métodos , Ligação Genética , DNA
17.
Mol Biol Rep ; 51(1): 254, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302755

RESUMO

BACKGROUND: The common bean (Phaseolus vulgaris) has become the food of choice owing to its wealthy nutritional profile, leading to a considerable increase in its cultivation worldwide. However, anthracnose has been a major impediment to production and productivity, as elite bean cultivars are vulnerable to this disease. To overcome barriers in crop production, scientists worldwide are working towards enhancing the genetic diversity of crops. One way to achieve this is by introducing novel genes from related crops, including landraces like KRC 8. This particular landrace, found in the North Western Himalayan region, has shown adult plant resistance against anthracnose and also possesses a recessive resistance gene. METHODS AND RESULTS: In this study, a population of 179 F2:9 RIL individuals (Jawala × KRC 8) was evaluated at both phenotypic and genotypic levels using over 830 diverse molecular markers to map the resistance gene present in KRC 8. We have successfully mapped a resistance gene to chromosome Pv01 using four SSR markers, namely IAC 238, IAC 235, IAC 259, and BM 146. The marker IAC 238 is closely linked to the gene with a distance of 0.29 cM, while the other markers flank the recessive resistance gene at 10.87 cM (IAC 259), 17.80 cM (BM 146), and 25.22 cM (IAC 235). Previously, a single recessive anthracnose resistance gene (co-8) has been reported in the common bean accession AB 136. However, when we performed PCR amplification with our tightly linked marker IAC 238, we got different amplicons in AB 136 and KRC 8. Interestingly, the susceptible cultivar Jawala produced the same amplicon as AB 136. This observation indicated that the recessive gene present in KRC 8 is different from co-8. As the gene is located far away from the Co-1 locus, we suggest naming the recessive gene co-Indb/co-19. Fine mapping of co-Indb in KRC 8 may provide new insights into the cloning and characterization of this recessive gene so that it can be incorporated into future bean improvement programs. Further, the tightly linked marker IAC 238 can be utilized in marker assisted introgression in future bean breeding programs. CONCLUSION: The novel co-Indb gene present in Himalayan landrace KRC 8, showing adult plant resistance against common bean anthracnose, is independent from all the resistance genes previously located on chromosome Pv01.


Assuntos
Phaseolus , Humanos , Mapeamento Cromossômico , Marcadores Genéticos , Phaseolus/genética , Melhoramento Vegetal , Genótipo , Doenças das Plantas/genética , Resistência à Doença/genética , Ligação Genética
18.
Plant Genome ; 17(1): e20427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38239091

RESUMO

Buckwheat (Fagopyrum spp.) is an important nutritional and nutraceutical-rich pseudo-cereal crop. Despite its obvious potential as a functional food, buckwheat has not been fully harnessed due to its low yield, self-incompatibility, increased seed cracking, limited seed set, lodging, and frost susceptibility. The inadequate availability of genomics resources in buckwheat is one of the major reasons for this. In the present study, genome-wide association mapping (GWAS) was conducted to identify loci associated with various morphological and yield-related traits in buckwheat. High throughput genotyping by sequencing led to the identification of 34,978 single nucleotide polymorphisms that were distributed across eight chromosomes. Population structure analysis grouped the genotypes into three sub-populations. The genotypes were also characterized for various qualitative and quantitative traits at two diverse locations, the analysis of which revealed a significant difference in the mean values. The association analysis revealed a total of 71 significant marker-trait associations across eight chromosomes. The candidate genes were identified near 100 Kb of quantitative trait loci (QTLs), providing insights into several metabolic and biosynthetic pathways. The integration of phenology and GWAS in the present study is useful to uncover the consistent genomic regions, related markers associated with various yield-related traits, and potential candidate genes having implications for being utilized in molecular breeding for the improvement of economically important traits in buckwheat. Moreover, the identified QTLs will assist in tracking the desirable alleles of target genes within the buckwheat breeding populations/germplasm.


Assuntos
Fagopyrum , Locos de Características Quantitativas , Fagopyrum/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Ligação Genética , Melhoramento Vegetal
19.
Psychiatry Res ; 333: 115691, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219345

RESUMO

The Human Genome Project was undertaken primarily to discover genetic causes and better treatments for human diseases. Schizophrenia was targeted since three of the project`s principal architects had a personal interest and also because, based on family, adoption, and twin studies, schizophrenia was widely believed to be a genetic disorder. Extensive studies using linkage analysis, candidate genes, genome wide association studies [GWAS], copy number variants, exome sequencing and other approaches have failed to identify causal genes. Instead, they identified almost 300 single nucleotide polymorphisms [SNPs] associated with altered risks of developing schizophrenia as well as some rare variants associated with increased risk in a small number of individuals. Risk genes play a role in the clinical expression of most diseases but do not cause the disease in the absence of other factors. Increasingly, observers question whether schizophrenia is strictly a genetic disorder. Beginning in 1996 NIMH began shifting its research resources from clinical studies to basic research based on the promise of the Human Genome Project. Consequently, three decades later NIMH's genetics investment has yielded almost nothing clinically useful for individuals currently affected. It is time to review NIMH`s schizophrenia research portfolio.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Projeto Genoma Humano , Polimorfismo de Nucleotídeo Único/genética , Ligação Genética , Predisposição Genética para Doença/genética
20.
Hum Hered ; 89(1): 8-31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38198765

RESUMO

INTRODUCTION: Joint linkage and association (JLA) analysis combines two disease gene mapping strategies: linkage information contained in families and association information contained in populations. Such a JLA analysis can increase mapping power, especially when the evidence for both linkage and association is low to moderate. Similarly, an association analysis based on haplotypes instead of single markers can increase mapping power when the association pattern is complex. METHODS: In this paper, we present an extension to the GENEHUNTER-MODSCORE software package that enables a JLA analysis based on haplotypes and uses information from arbitrary pedigree types and unrelated individuals. Our new JLA method is an extension of the MOD score approach for linkage analysis, which allows the estimation of trait-model and linkage disequilibrium (LD) parameters, i.e., penetrance, disease-allele frequency, and haplotype frequencies. LD is modeled between alleles at a single diallelic disease locus and up to three diallelic test markers. Linkage information is contributed by additional multi-allelic flanking markers. We investigated the statistical properties of our JLA implementation using extensive simulations, and we compared our approach to another commonly used single-marker JLA test. To demonstrate the applicability of our new method in practice, we analyzed pedigree data from the German National Case Collection for Familial Pancreatic Cancer (FaPaCa). RESULTS: Based on the simulated data, we demonstrated the validity of our JLA-MOD score analysis implementation and identified scenarios in which haplotype-based tests outperformed the single-marker test. The estimated trait-model and LD parameters were in good accordance with the simulated values. Our method outperformed another commonly used JLA single-marker test when the LD pattern was complex. The exploratory analysis of the FaPaCa families led to the identification of a promising genetic region on chromosome 22q13.33, which can serve as a starting point for future mutation analysis and molecular research in pancreatic cancer. CONCLUSION: Our newly proposed JLA-MOD score method proves to be a valuable gene mapping and characterization tool, especially when either linkage or association information alone provide insufficient power to identify the disease-causing genetic variants.


Assuntos
Carcinoma , Ligação Genética , Haplótipos , Desequilíbrio de Ligação , Neoplasias Pancreáticas , Software , Humanos , Neoplasias Pancreáticas/genética , Haplótipos/genética , Linhagem , Modelos Genéticos , Feminino , Masculino , Predisposição Genética para Doença , Simulação por Computador , Frequência do Gene/genética , Polimorfismo de Nucleotídeo Único/genética , Mapeamento Cromossômico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...